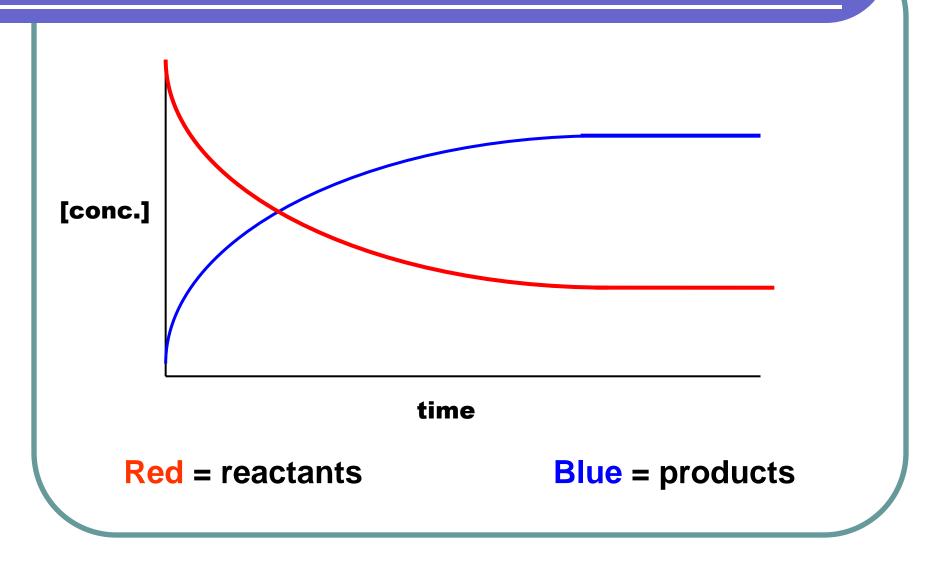
...going back and forth... ...at the same time... ...at the same rate...

What happens in a reversible reaction?

Consider: $aW + bX \rightleftharpoons cY + dZ$

When the <u>rate</u> of the forward reaction is equal to the <u>rate</u> of the reverse reaction, the system has reached **dynamic equilibrium**

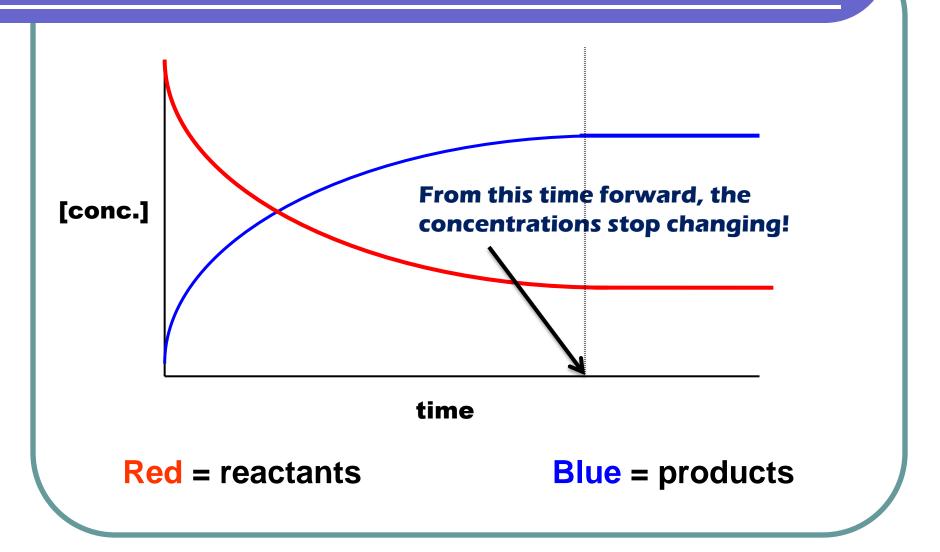

 $Rate_{FWD} = Rate_{REV}$

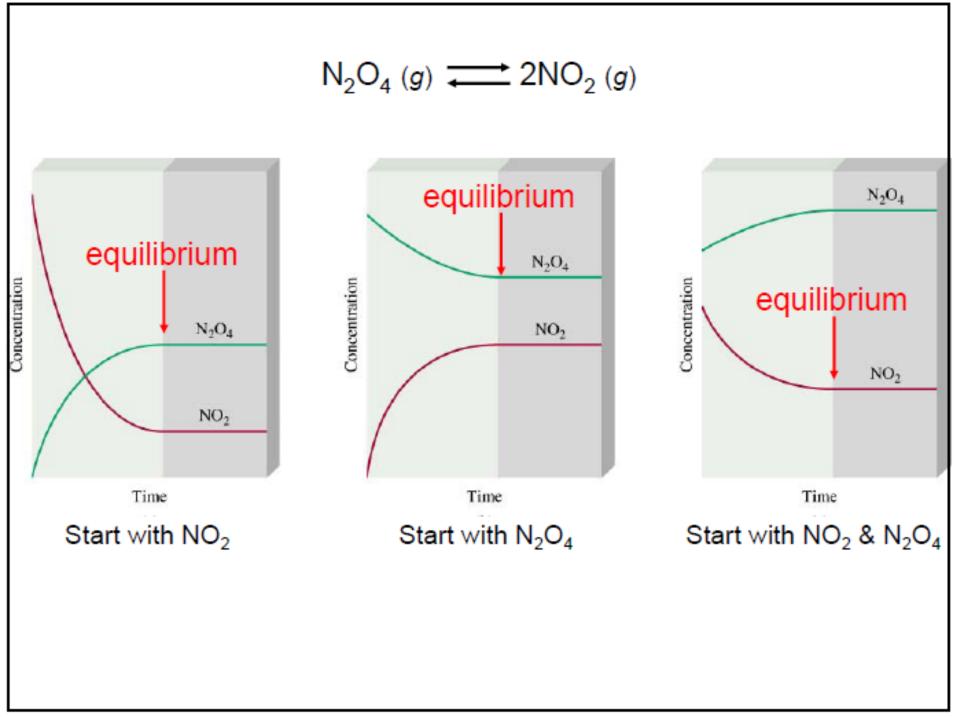
The reaction does not stop!

- Products are still being formed
- Products are still combining to reform the reactants
- BUT Nothing appears to be happening
 - Concentrations stop changing
 - Color changes cease, etc...

- The only thing *equal* about equilibrium are the rates of the forward and reverse reactions
- Some reactions reach equilibrium when there is mostly products, others when there is mostly reactants
- a 50/50 mix of both reactants and products is actually rare

Graphing $R \rightleftharpoons P$




Quantitatively the situation for a reversible reaction can be expressed for <u>"what's in your dish"</u> <u>at that moment</u> using the reactant and product concentrations in the mass-action expression

For the reaction: $aW + bX \rightleftharpoons cY + dZ$

$$Q = \frac{[Y]^c [Z]^d}{[W]^a [X]^b}$$

Graphing $R \rightleftharpoons P$

 $N_2O_4(g) \longrightarrow 2NO_2(g)$

constant

Table 14.1	The NO ₂ -N ₂ O ₄ System at 25	°C
------------	---	----

Initial Concentrations (M)		Equilibrium Concentrations (M)		Ratio of Concentrations at Equilibrium	
[NO ₂]	[N ₂ O ₄]	[NO ₂]	[N ₂ O ₄]	$\frac{[NO_2]}{[N_2O_4]}$	$\frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]}$
0.000	0.670	0.0547	0.643	0.0851	4.65×10^{-3}
0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}
0.0300	0.500	0.0475	0.491	0.0967	4.60×10^{-3}
0.0400	0.600	0.0523	0.594	0.0880	4.60×10^{-3}
0.200	0.000	0.0204	0.0898	0.227	4.63×10^{-3}

	Ratio of Concentrations at Equilibrium	
$N_2O_4(g) \rightarrow 2NO_2(g)$		
	$\frac{[NO_2]}{[N_2O_4]}$	$\frac{[NO_2]^2}{[N_2O_4]}$
	0.0851	4.65×10^{-3}
	0.102	4.66×10^{-3}
	0.0967	4.60×10^{-3}
	0.0880	4.60×10^{-3}
	0.227	4.63×10^{-3}

Consider: $aW + bX \rightleftharpoons cY + dZ$

At equilibrium, because the **concentrations** stop changing, **Q** becomes constant and is replaced by **K** – the equilibrium constant.

$$K = \frac{[Y]^c [Z]^d}{[W]^a [X]^b}$$

$$K = \frac{[Y]^c [Z]^d}{[W]^a [X]^b}$$

Note :

- 1) [products] on top and [reactants] on bottom
- 2) Coefficients become exponents

$$K = \frac{[Y]^{c}[Z]^{d}}{[W]^{a}[X]^{b}}$$

- K = the equilibrium constant
- K is unitless

K is temperature dependent

as long as the temperature is constant, so is K for a reversible reaction

Note :
$$aW_{(aq)} + bX_{(s)} \approx cY_{(aq)} + dZ_{(l)}$$

Pure substances (*solids, liquids*) do not have a changeable [molarity] and so drop out of the equilibrium expression

$$K = \frac{\left[Y\right]^c}{\left[W\right]^a}$$

What's in your dish at equilibrium?

Consider: $aW + bX \rightleftharpoons cY + dZ$

Which of the chemicals are "in your dish" at equilibrium?

There <u>MUST</u> be some of <u>EACH</u> of them to be at equilibrium

The size of K indicates what there is "more of" once equilibrium is reached.

-called the "equilibrium position"

- The size of K tells us something about the <u>equilibrium position</u>
 - i.e. what are the concentrations of the reactants and products at equilibrium?
- Because the products are in the numerator, the larger the K value, the more products that are present at equilibrium and the fewer reactants that remain.

General rule: $K < 10^{-4}$

- the equilibrium mixture is mostly reactants
- The reaction does not "proceed" very far forward in order to reach equilibrium
- The smaller K is, the fewer products formed

General rule: 10⁻⁴ < K < 10⁴

 the equilibrium mixture has significant amounts of reactants and products

Not necessarily a "50/50" mix, but reasonably similar amounts of reactants and products

General rule: $K > 10^4$

- the equilibrium mixture is mostly products
- The larger K gets, the more the forward reaction "goes to completion"

...going back and forth... ...at the same time... ...at the same rate...